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We present a new model to describe the thermal and compositional evolution of a 
binary alloy which is cooled from above. Explicit account is taken of the nucleation 
of crystals in the cold upper thermal boundary layer, the growth of crystals in the 
turbulently convecting interior, and their subsequent gravitational settling to the floor 
of the chamber. The crystallization of one solid phase only is considered. When the 
residence time of a typical crystal within the convecting bulk is short compared with 
the overall cooling time of the fluid, the crystal size distribution loses memory of earlier 
conditions in the fluid and the number density simply decays exponentially with the 
cube of the crystal size. A quasi-steady state exists in which the rate of crystal 
production is balanced by the rate of sedimentation at the floor, allowing the volume 
fraction of suspended crystals to remain small until convection ceases to be vigorous. 

We focus on the situation in which the latent heat released by solidification would 
far exceed the heat flux extracted through convection if the melt undercooling were 
maintained equal to the initial temperature difference applied at the cold upper 
boundary. In this case, either the growth or nucleation of crystals must be limited in 
order that the fluid continues to cool. Both the growth-limited and nucleation-limited 
regimes may develop during the cooling of an individual fluid body, depending upon 
the thermal boundary condition at the upper boundary of the convecting portion of the 
fluid. 

We calculate how the mean crystal size within the sedimented crystal pile evolves as 
the fluid cools. During the growth-limited regime, the mean crystal size in the crystal 
pile typically decreases with height, owing to the decrease in the extracted heat flux and 
the greater efficiency of crystal settling as the fluid layer becomes shallower. In contrast, 
during the nucleation-limi ted regime, the fluid undercooling may increase significantly 
as the fluid cools, and inverse grading (large crystals over small) is possible. We discuss 
the possible application of our theory to the cooling of large igneous intrusions. 

1. Introduction 
The processes by which a hot, vigorously convecting body of fluid cools and 

solidifies have attracted much attention owing to their importance in the generation of 
igneous rocks (see the review by Huppert 1990), as well as in chemical processing 
(Randolph & Larson 1971). A central issue in igneous petrology concerns the 
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Cooling from above to drive convection 

FIGURE 1. Schematic of a vigorously convecting fluid body driven by cooling from above. Crystals 
nucleate in the cold upper boundary layer, where the supercooling is greatest, before entering the bulk 
convecting fluid either by settling or by repeated boundary-layer instability. Within the vigorously 
convecting interior, crystals continue to grow until settling out at the base to form a cumulate pile. 

mechanisms by which hot molten magma cools and solidifies to form large igneous 
intrusions. Much recent theoretical and experimental work on the interactions between 
convection and crystallization in vigorously convecting fluids has examined the growth 
of solid attached to the cooled boundaries (Brandeis, Jaupart & Allegre 1984; Woods 
& Huppert 1989; Kerr et al. 1990). However, recent experiments by Kerr et al. (1990) 
and Martin (1 990) suggest that if the fluid becomes sufficiently supercooled, then some 
crystals may also nucleate and grow within the convecting body of fluid. As these 
crystals grow, they settle to the base of the fluid to form a crystal pile (figure 1). The 
idea that crystal settling may generate some features associated with igneous intrusions 
is not new (Bowen 1915; Bartlett 1969), and is still the focus of much debate in the 
petrological literature (for example Campbell 1978 ; Martin & Nokes 1989). However, 
to date, no complete model of the solidification process has been developed 
incorporating details of both the generation and settling of crystals, and the thermal 
and compositional history of the fluid. 

The purpose of this paper is to develop and investigate such a model for the 
nucleation, growth and sedimentation of crystals in a binary fluid as it is cooled from 
above. We investigate how the crystallization dynamics interacts with the convective 
cooling of the fluid, and identify the processes which control the evolution of the mean 
size of suspended crystals as the system evolves. This lends insight into the mean grain 
size variation in the crystal pile. Our model is a synthesis of a model of the 
sedimentation of a dilute suspension of particles from a turbulently convecting fluid 
(Martin & Nokes 1989) and of simple theoretical models for the nucleation and growth 
of crystals in a supercooled fluid (e.g. Kirkpatrick 1976; Dowty 1980; Brandeis et al. 
1984; Brandeis & Jaupart 1987; Spohn, Hort & Fischer 1988), combined with a general 
population dynamics representation for the crystal size distribution (Randolph & 
Larson 1971). 

In $2, we shall briefly introduce the equations for the conservation of heat and mass 
in a turbulently convecting fluid cooled from above, followed in 9 3  by some general 
theory for the crystal size distribution based upon the nucleation and growth kinetics. 
For the present discussion, we shall consider the crystallization of only a single solid 
phase. We then analyse the quasi-steady form of this crystal distribution which applies 
when the cooling time of the fluid far exceeds the typical residence time of a crystal in 
the fluid (34). In 5 5 ,  we couple our quasi-steady model with the global model of heat 
and mass conservation of 0 2, introducing suitable dimensionless variables to facilitate 
our analysis. In $6, we identify two asymptotic regimes which govern the cooling of the 
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fluid in the limit that the heat released by the crystallization per unit time, based upon 
the initial undercooling, far exceeds the heat flux extracted from the fluid per unit time. 
We then examine ($7) the effect of different thermal boundary conditions at the roof 
upon the evolution of the fluid by studying selected illustrative examples. Finally, in $8, 
we discuss our results, with particular emphasis on geological applications. 

2. Evolution of a fluid cooled from above 
We study the cooling from above of a fluid body with small aspect ratio 

(depth/width). We shall treat fluids which can be characterized as a binary alloy, with 
distinct liquidus and solidus curves such that heavy crystals nucleate and grow within 
the fluid. Typically, the crystals formed differ in composition from the surrounding 
fluid. The effects of pressure variations upon the liquidus and solidus curves are 
neglected. We also neglect the effect of composition upon fluid density, and consider 
only thermally driven convection. 

We suppose an initial state in which there are no crystals, and treat only cases in 
which the crystal volume fraction remains sufficiently small for fluid motions to be 
unaffected by the presence of the suspended crystals. As outlined below, sufficiently 
rapid settling of the dense crystals to form a basal cumulate can allow a low crystal 
volume fraction within the fluid throughout crystallization. We consider high-Prandtl- 
number fluids, in line with our preferred application to magmatic systems, and further 
restrict ourselves to cases in which the fluid is vigorously convecting, and hence well- 
mixed. For infinite-Prandtl-number convection in fluids of small aspect ratio, this 
requires Rayleigh number Ra 2 lo', a constraint which may be relaxed by the presence 
of internal heating (Hansen, Yuen & Kroening 1992). The well-mixed assumption leads 
us to formulate our theory in terms of state variables which are spatially uniform, with 
the necessary exception of the thermal boundary layer adjacent to the cold roof. In 
particular, the main convecting portion of the fluid may be considered to have constant 
viscosity. However, the model described here is essentially nonlinear, and for less 
vigorous convection, it would be necessary to consider the combined effects of spatial 
variations in temperature, composition and crystal population. 

We neglect post-cumulus processes, such as Ostwald ripening, and in-situ 
crystallization at the roof and the floor, which may lead to significant compositional 
convection in the interstices under some circumstances (see, for example, Tait & 
Jaupart 1992). Instead, we focus on the initial formation of the cumulate pile and 
assume for simplicity that the crystal cumulate is perfectly packed, with no interstitial 
fluid. 

First, we shall describe the overall heat and mass balances applicable to the 
crystallization of a fluid cooled from above. When the fluid body is cooled from above, 
the extracted heat flux is balanced by a combination of heat loss from the fluid through 
the roof and the release of latent heat when crystals are formed. If the temperature of 
the bulk convecting fluid is T, then 

d T  
dt 

( H -  h)pc - = -9 +pLZ(H- h) R,, 

in which p is the fluid density, c p  its thermal capacity, 9 is the latent heat of 
crystallization released per unit mass of fluid, and 9 is the heat flux per unit area 
through the roof of the chamber. The volume of new solid formed in unit time per unit 
volume is R, and the thickness of the convecting fluid layer is (H-h) ,  where H is its 
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initial thickness and h is the thickness of the cumulate pile at the floor. The rate of 
growth of a perfectly packed cumulate is given by 

dh/dt = R,, (2.2) 

where R, is the crystal sedimentation rate. In writing (2.1), we have assumed that the 
basal cumulate is perfectly insulated, and retains its temperature from the time of 
sedimentation. An alternative limiting case could be a perfectly conducting cumulate 
which remains at the same temperature as the overlying fluid at all times, for which the 
factor ( H - h )  on the left-hand side of (2.1) would simply become equal to H .  

For vigorously convecting fluids, heat transfer is effected by successive episodes of 
diffusive growth of a thermal boundary layer, followed by detachment of plumes when 
this boundary layer becomes unstable (Howard 1964). If the fluid body is sufficiently 
large, the heat flux extracted is independent of the overall thickness of the fluid layer, 
and can be related to the temperature TR of the roof by the expression (Turner 1979) 

9 = pcP J( T- &)$, 

where J - 0.16(g~&/~);  (2.4) 

(2.3) 

for convection driven only by cooling from above (Katsaros et al. 1977). Here, g is 
the acceleration due to gravity, a is the thermal expansion coefficient, K is thermal 
diffusivity, and u is the kinematic viscosity of the fluid. The upper boundary layer has 
scale thickness 

where Ra = ga(T- TR)(H- h)3/v~ is the Rayleigh number. Note that h, is independent 
of the fluid depth (H-h) .  

h, = pcP K(T- T R ) / 9  - 6.4R~-;(H-h) ,  (2.5) 

Conservation of mass in the bulk convecting fluid takes the form 

( 1  -@)dC/dt = (C-C,)R,, (2.6) 

where Cis the composition of the bulk convecting fluid, C, the composition of the solid 
formed, and @ the volume fraction of suspended crystals within the fluid. 

We assume here that only one crystalline phase is formed, which for a eutectic binary 
alloy requires the fluid temperature to be above the eutectic temperature TE. If the 
liquidus, T,(C), and solidus curves can be considered to be locally linear, with liquidus 
slope TL = m and distribution coefficient k ,  (0 < k ,  < l ) ,  then the solid composition 
C, and liquidus temperature are related to the fluid composition C by the 
expressions 

C,-C,= k,(C-C,); (2.7) 

r, = T,+m(C-C,), (2.8) 

where (z, C,) represents the point on the phase diagram at which the solidus and 
liquidus curves intercept (figure 2) and T, 2 TL. The mass conservation equation (2.6) 
can then be written as an evolution equation for the liquidus temperature of the fluid, 

assuming that @ < 1 .  A similar expression may be obtained for a general liquidus 
relation TL(C) and non-constant distribution coefficient k,( C). 

To complete the above model, we require the crystal production and sedimentation 
rates, R, and R,, and the roof temperature, TR. We calculate R, and R, in the 
following two sections, but, in general, the roof temperature can only be determined 
by coupling the thermal evolution of the convecting fluid body to a model for the 
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FIGURE 2. Typical eutectic equilibrium phase diagram with eutectic point marked E. Above the 
liquidus temperature, the binary alloy is liquid at equilibrium, while below the solidus it is solid. The 
general evolution of the bulk convecting fluid as it is cooled from above is given by the bold line. First, 
the fluid is cooled to its liquidus temperature, at which time the crystals nucleated in the cold upper 
boundary layer may continue to grow in the interior. The continual release of latent heat maintains 
the bulk fluid temperature just below the liquidus until the undercooling in the upper boundary layer 
becomes too small for significant nucleation to continue. Thereafter, the crystal population is 
characterized by a smaller number of larger crystals and the undercooling within the bulk convecting 
interior increases. If the roof temperature is constant, this final phase is not associated with any 
cumulate growth, (i), and the fluid composition remains constant. If, however, the roof temperature 
is decreasing the liquidus temperature may continue to decrease, (ii), and there is a finite cumulate 
thickness associated with the nucleation-limited regime. 

overlying region, this may be solid (melting or freezing), or a stagnant viscous lid 
which caps the convecting part of the fluid when there is a strong viscosity variation 
between fluid in the interior and the fluid adjacent to the cold upper boundary (Richter 
1978; Jaupart & Parsons 1985; Bruce 1989; Davaille & Jaupart 1993). In these cases, 
the ‘roof’ of the chamber should be understood to be coincident with the top of the 
mobile, convectively unstable part of the fluid. However, in this paper, we will be 
interested only in the evolution of the fluid part of the system, and shall not constrain 
ourselves to any specific models for the roof region. After a general discussion in $6, 
we shall treat two simple examples designed to demonstrate the fundamental physical 
balances and to illustrate the possible range of qualitative behaviours. 

3. Crystal nucleation, growth and settling 
New crystals can nucleate and grow wherever the constitutional undercooling in the 

fluid is sufficiently large. Nucleation does not occur immediately the fluid temperature 
falls below the liquidus, but only when the undercooling exceeds a critical value, 
termed the nucleation delay (Dowty 1980). Hence, for a fluid cooled from above, 
nucleation occurs first within the cold upper boundary layer (Brandeis et af .  1984). 
Moreover, we shall see in 95 below that under suitable conditions, the undercooling 
within the convecting bulk of the fluid remains below the critical nucleation delay, in 
which case significant nucleation of free crystals is restricted to the upper boundary 
layer at all times. 

After nucleation, crystals are extracted from the cold upper boundary layer, either 
by settling or by entrainment in the cold downgoing plumes (Brandeis & Jaupart 1986; 
Sparks et af .  1993), depending upon the frequency of plume events : for convection at 
sufficiently high Rayleigh number, crystals are typically advected out by plumes before 
they have grown sufficiently large to settle out by themselves (see Appendix A). 
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Whichever mechanism applies, we assume here for simplicity that the mean crystal 
radius upon extraction from the boundary layer is much less than the mean radius of 
sedimented crystals. In other words, we assume that growth occurs predominantly 
while the crystals are suspended within the main body of convecting melt. This enables 
us to treat nucleation as occurring simultaneously with extraction. 

Once entrained into the main body of convecting melt, crystals remain suspended 
and grow until they settle out at the base of the fluid body. For sufficiently vigorous 
convection, i.e. when the mean vertical fluid velocity far exceeds the Stokes settling 
velocity for individual crystals, the crystal population may be considered well-mixed, 
and hence spatially uniform (Martin & Nokes 1989). For a dilute (@ < 1) uniform 
suspension of particles in a turbulently convecting fluid, Martin & Nokes (1988, 1989) 
have determined experimentally and theoretically that the rate of sedimentation is 
described by an exponential decay law based upon the Stokesian settling velocities of 
the particles. Sedimentation occurs as particles pass through the thin viscous boundary 
layer at the base of the convecting region (Turner, Huppert & Sparks 1986; Martin & 
Nokes 1989). This description may be also be applied to the settling of suspended 
crystals if the crystal population is sufficiently dilute for the thermal convection to be 
unaffected, and if the crystals may be considered passive tracers within the convecting 
interior, above the basal viscous boundary layer. The validity of this passive-tracer 
assumption is examined further in Appendix B. 

3.1. The crystal size distribution function 
To describe the mean crystal population in the convecting interior, we define a crystal 
size distribution function $(a, t )  such that, at time t there are $(a, t )  da crystals with 
radius between a and a + da per unit volume of the chamber. As outlined above, these 
crystals have been generated within the cold upper boundary layer and entrained into 
the bulk convective flow, where they grow before sedimentation. We assume for 
simplicity that the crystals are spherical. Following Martin & Nokes (1989), the rate of 
sedimentation of crystals of radius a is W, $/(If- h), where W,(a) = 2g’a2/9u is the 
Stokes settling velocity for an unhindered sphere of radius a, and g’ = g A p / p  is the 
reduced gravity associated with crystals of density p + A p  settling out of fluid of density 
p. If the radii of the crystals grow at a rate V(t), where V(t )  reflects the fluid conditions 
at time t ,  then the number of crystals of radius a evolves according to the equation (cf. 
Randolph & Larson 1971 ; Marsh 1988) 

where h = 2g‘/9v. We assume that the crystal growth rate V is independent of the 
crystal radius a. Note that the kinematic viscosity v is in general a function of the fluid 
temperature and crystal content. 

Initially there are no crystals, and so (3.1) has initial condition $(a, 0) = 0. The rate 
of nucleation of new crystals per unit chamber volume is N(t),  which gives the 
additional boundary condition $(O,  t )  = N(t)/  V( t )  (see Appendix C ) .  Hence, solving 
along characteristics, the general solution to (3.1) is 

a(to; t )  = lo V(t’) dt’, (3.3) 
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in which to 2 0 is the time of nucleation for crystals which have radius a at time t. From 
the crystal distribution, we may obtain the rate of production R ,  of new solid per unit 
volume and the crystal sedimentation rate R,, 

where a(0; t) is the maximum crystal radius at time t. In addition, the overall crystal 
fraction, @, and the average radius ad of sedimented crystals, are 

a(0;t) 

@(t) = $n I0 a3$(a, t) da; 

a(0;t) 

ad(t) = I0 a3$(a, t) da/[(o't) a2$(a, t) da. (3.7) 

In defining ad, we have taken a simple numerical average, with the additional factor a2 
reflecting the faster settling rates of larger crystals. We shall use (3.6) in Appendix D 
below to confirm under what conditions our assumption of a small crystal volume 
fraction is valid. 

3.2. Nucleation and growth rates 
For a binary alloy, the rates of nucleation and growth of crystals are typically modelled 
as dependent only upon the locally averaged constitutional undercooling (TL - T )  
(Kirkpatrick 1976; Dowty 1980; Brandeis et al. 1984). In the present context, this 
requires mixing of the bulk fluid to be sufficiently intense for crystallization not to be 
suppressed by the growth of diffusive compositional boundary layers around individual 
crystals. Above the eutectic temperature (if it exists), just one crystalline phase 
nucleates, and only then if the fluid is supercooled sufficiently. This phase typically 
takes the form of a solid solution, in which molecules of one component are included 
within a crystalline matrix of the second, dominant component. For a eutectic binary 
alloy, the choice of dominant component depends upon which side of the eutectic 
composition the fluid composition lies. 

When a eutectic binary alloy is cooled below the eutectic temperature, however, the 
second crystalline phase is able to grow within the interior. This can lead to some rich 
dynamics in the neighbourhood of the eutectic point when a stagnant (or completely 
uniform) fluid body is cooled. For example, in the model of Hort & Spohn (1991) for 
the completely uniform cooling of a fluid body, oscillatory nucleation of the two phases 
occurs, with the fluid composition and temperature evolving along a complex 
trajectory around the eutectic point. The evolution of two separate crystallising phases, 
each with their own kinetic laws and settling rates, is a complex and interesting 
problem, but before studying this case, it is sensible first to understand the settling 
dynamics of a single phase. Therefore, we shall here only treat crystallization above the 
eutectic temperature, which necessarily means that we cannot describe the entire 
solidification of the body when the roof is maintained below the eutectic temperature. 

We now determine appropriate forms for the crystal nucleation and growth rates. 
We have argued that crystal nucleation occurs within the cold upper boundary layer, 
across which the fluid composition is approximately constant, since any compositional 
boundary layer would be much thinner than the outer thermal boundary layer. 
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Consequently, the appropriate undercooling for the nucleation process is ( TL - TR), 
where TL is the liquidus temperature of the bulk fluid and TR is the roof temperature. 
In addition, the nucleation rate must be proportional to h,/(H-h),  where h, is the 
scale thickness of the upper boundary layer and (H-h )  is the depth of the convecting 
fluid layer. This multiplicative factor is necessary because crystals formed in the thin 
boundary layer are entrained into the convecting bulk and mixed throughout a greater 
volume. Hence, the nucleation rate N per unit chamber volume has the following 
functional form : 

N(t)  = ~ R( q, - TR), 
H -  h(t) 

where f i ( U )  is the rate of nucleation per unit volume for a fluid with uniform 
constitutional undercooling U and B - O( 1) is a undetermined dimensionless constant, 
dependent upon the detailed structure of the thermal boundary layer. Here, we shall 
assume that B = 1. 

In our model, crystal growth occurs predominantly within the convecting interior, 
whose undercooling is (T, - 7). Therefore, the growth rate V has functional form 

V(t) = V(TL- T).  (3.9) 

In this paper, we shall not attempt to determine the precise form of the nucleation 
and growth rate functions and V by reference to attachment or diffusion kinetics, 
neither shall we require that nucleation be homogeneous or heterogeneous. Instead, we 
shall simply study parametric forms for dimensionless nucleation and growth rates as 
defined in $5.1 below, thereby enabling the examination of a wide variety of (nonlinear) 
nucleation and growth behaviours. 

4. Crystal residence time and the quasi-steady state 
The model outlined in 992 and 3 simplifies greatly when the typical residence time of 

a crystal within the convecting bulk is much shorter than the overall cooling timescale 
of the fluid. 

From the heat conservation equation (2.1), the convective cooling timescale t ,  is 

while the form of the exponential in the solution (3.2), (3.3) for the crystal size density 
function $(a, t )  suggests that the crystals remain in suspension for a time of order 

t,,, - [ ( H - h ) / ( W ) ] f .  

If t ,  >> t,,,, then over the shorter crystal residence timescale, t,,,, we may consider A, V 
and N to be effectively constant, since these bulk properties evolve only over the longer 
fluid cooling timescale, t,. This is termed the quasi-steady limit. However, the 
appropriateness of this limit cannot immediately be determined for a given set of 
kinetic laws and externally imposed conditions, because of the strong coupling between 
cooling and crystallization. Therefore, we first assume that t ,  >> t,,,, and only later shall 
we determine conditions under which this approximation is valid (see Appendix D). 

In the quasi-steady limit, we can solve (3.1) for the instantaneous crystal size 
distribution by taking the steady-state limit @/at = 0). To see this formally, let us 
rewrite (3.3) in the form 

(4.3) a(& ; t )  = V(t,,) ( t  - to )  + +(d V/dt) ( t  - tJ2 + . . . . 
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Over a timescale ( t  - to) = O(t,,,), the term ( t  - to) d V/dt has magnitude V6, where 6 = 
t , , , /t ,  4 1 .  Thus, 

(4.4) 

Similarly, we can form expansions for h and N ,  which upon substitution into (3.2), give 
the result 

a(to;  t )  = V(t)( t  - to)(l+ O(6)). 

$(a( to; t ) , t )  =-(I  NtO) +0(6))exp V(t)"t - t0)3(1 + 0(8))] (4.5) 
V t O )  

for times ( t - t o )  = O(tres). This has the leading-order form 

N ( t )  
V(t) [ 3(H-h(t)) V(t )  1 ' $(a, t )  = -exp - 

which is the same as the steady-state solution @/at  = 0 )  to (3. I). Note that for a 9 Vtre,, 
the exponential term in (4.6) becomes vanishingly small. Therefore, for t 9 t,,,, 
integrals with respect to crystal radius a between zero and a(0, t )  (such as (3.4)-(3.7)), 
can be simplified further by changing the upper limit to infinity. 

The existence of the quasi-steady solution, as described by (4.6), implies that a 
balance must exist between (H-h)R,, the total rate of production of solid by 
crystallization, and R,, the rate of sedimentation of crystals to form a cumulate pile. 
From (3.4), (3.5) and (4.6) we indeed see that 

( H -  h) R, = R, = 4x(H- h)2 N V / h ,  (4 7) 
in which N ,  V and h are all functions of time, varying over the longer timescale t,. The 
crystal production rate (and hence the rate of release of latent heat) is therefore 
proportional to the instantaneous nucleation and growth rates. The quasi-steady state 
described here may be viewed as an extension of the steady-state model proposed by 
Martin & Nokes (1989). 

5. The simplified model in the quasi-steady limit 
In order that we may isolate the essential dynamical balances for our model system, 

we shall now non-dimensionalize the model equations in the quasi-steady limit. First, 
we define dimensionless fluid, liquidus and roof temperatures 8, 8, and 8, by 

where & is the liquidus temperature TL corresponding to the initial fluid composition 
C,, as given by (2.8). Tef is some reference temperature, which may be chosen to be the 
limiting temperature of the chamber as t+ 00, and AT = (6- Tef) .  For a fixed roof 
temperature TR, the natural choice for T,,f would simply be Tef. = TR. 

The crystallization process is driven by the convective cooling of the fluid. The 
convective cooling timescale is (cf. (4.1)) 

t,, = HpcP AT/&, (5.2) 

where & = pc,J,Afi is a reference heat flux and J ,  is given by (2.4) with kinematic 
viscosity vo = v(&). We define x = v / v o  to be the dimensionless viscosity. From (5.2), 
we also define a dimensionless time 

7 = t/t ,o, (5.3) 
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and rescale the depth of the crystal cumulate with respect to H ,  so that d = h / H  is the 
dimensionless cumulate thickness. 

Finally, we rescale the growth and nucleation rates. In the present model, the only 
externally imposed temperature difference is AT, so we define the dimensionless growth 
and volumetric nucleation rates to be 

v(O,-O) = V / V ,  and n"(O,-O,) = fi/G,, (5.4) 

where V, = V ( A T )  and fi, = f i (AT) .  From (2.5), the average nucleation rate N ,  (per 
unit chamber volume) has scale No = (h,,/H) fi,, where h,, = pep .AT/% - 
6.4(v~/gaAT) i  is the reference upper boundary-layer thickness. Therefore, the 
dimensionless nucleation rate n has the form 

n(O, - 0,) = N / N ,  = X;(O - 0,)-;(1- d)-'~(t/, - 0,). (5 .5)  

5.1. Parametric forms for the crystal nucleation and growth rates 
We choose the following simple parametric forms for the dimensionless volumetric 
nucleation and growth rates, n" and v, as functions of the undercooling in the cold upper 
thermal boundary layer (u = O,-O,), and in the convecting bulk fluid (u = O,-O) 

At zero undercooling (u = 0), both nucleation and growth rates are zero, whilst at 
u = 1 ,  which corresponds to a dimensional undercooling AT,  both n" and v are unity, as 
required by the scaling (5.4). The constant c is the dimensionless nucleation delay, and 
represents the minimum undercooling required for crystal nucleation to occur (Dowty 
1980), scaled by the reference temperature scale AT. The exponents p and q are both 
positive, and typically exceed unity for magmatic fluids (Kirkpatrick 1977; Brandeis & 
Jaupart 1986). 

The parametric form (5.6) cannot be used to describe fluids for which the growth and 
nucleation rates do not increase monotonically with u for the applicable range of 
undercooling, although it would be a simple matter to extend the current investigation 
to such fluids. Note also that the qualitative behaviour described below when the 
nucleation function is linear ( p  = l ) ,  and has non-zero nucleation delay (c > 0), is 
similar to that predicted for highly nonlinear nucleation functions ( p  9 l ) ,  but with 
zero nucleation delay (c = 0). 

5.2. The coupled model for cooling and crystallization 
Upon rescaling variables as described above, the model equations (2. l ) ,  (2.9) and (2.2) 
reduce to the following dimensionless equations for the conservation of heat, mass and 
cumulate-layer thickness in the quasi-steady limit : 

(1 -d )d  =- f+AS( l -d ) r , ;  

h = A ( l  - d ) r p ,  

6, = -A(l-IcD)(Oa-OL)rp; 

where the dots denote differentiation with respect to 7 and the Stefan number S = 
Y / c ,  AT. The dimensionless heat flux, f, and crystal production (sedimentation) rate, 
rp ,  are given by 

f = F/& = x-5(( j -O,)$;  (5.10) 

r p  = R,/R,, = x( 1 - d )  nu, (5.1 1 )  



Nucleation, growth and settling of crystals 93 

in which R,, = 47cHN,, &/A,  and A, = 2g'/9vO. The dimensionless parameter A is 
defined by 

A = 47cHN, v, tco/Ao, (5.12) 

and is a measure of the amount of solid which would be produced if the constitutional 
undercooling were maintained equal everywhere to the initial imposed temperature 
difference ATthroughout the cooling history of the fluid. The value A = 1 corresponds 
to the case in which the entire chamber would become solid over the timescale tco. In 
the following sections, we shall concentrate on the asymptotic limit A % 1, in which 
crystals would grow very rapidly if undercooled by AT. We shall see in the following 
sections that, in this limit, the release of latent heat during crystallization serves to 
limit significantly the rate of crystallization as the fluid cools. 

Note that by eliminating r p  from (5.8) and (5.9), and integrating the result we may 
obtain the simple expression, 

(5.13) 

which relates the liquidus temperature OL (and hence the fluid composition) to the 
depth d of the crystal cumulate. This relationship follows from the observation that, 
in the quasi-steady limit, the nucleation, growth and settling mechanism described in 
this paper is an example of perfect fractionation, with newly formed crystals effectively 
being removed immediately from the convecting bulk (equation (4.7)). 

5.3. Initial conditions 
While the convecting bulk fluid is still superheated (T  > TL), any crystals nucleated in 
the upper boundary layer will melt upon extraction from the boundary layer. Hence, 
we may neglect this initial transient and commence calculation once the melt superheat 
has been removed. Thus, the dimensionless initial conditions (7 = 0) for (5.7)-(5.9) are 
0 = 8 , =  1 a n d d = O .  

To complete the mathematical formulation, we must describe the evolution of the 
roof temperature OR.  In $7, we consider two simple examples which have been chosen 
to illustrate the influence of the roof conditions upon the evolution of the melt, namely 
a fixed roof temperature and a prescribed, varying roof heat flux. However, before 
launching into this discussion, we shall first outline in $6 the general behaviour of 
the model system in the limit A % 1. Conditions for which A % 1 are described in 
Appendix D. 

6. The limit A B 1 : growth- and nucleation-limited crystallization 
As heat is removed through the roof of the chamber, the mean fluid temperature 8 

must decrease. Therefore, from (5.7) it follows that the convective heat flux,f, always 
exceeds the rate of release of the latent heat of solidification, AS( 1 -d )  r p .  Combining 
this constraint with the expression for the dimensionless crystal production rate r p ,  
yields the condition 

AS( 1 - d)' Xnu 5 f. (6.1) 

Typically S, f ,  (1 - d )  - O( 1) and x 2 1. Therefore, in the limit A 9 1, the product 

nu 5 A-l < 1. (6.2) 

Using the model nucleation and growth laws (5.6) for n and v, it follows that there are 
two different regimes under which the constraint (6.2) may be satisfied. Either the 

4 F L M  273 
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crystal nucleation rate is very small (n  - A-'), or the crystal growth rate is very small 
(u - A-'). Each of these regimes may occur during the cooling of a single fluid body. 

(5.1. The growth-limited regime 

If the undercooling in the thermal boundary layer, (8, -OR), exceeds the nucleation 
delay, E ,  then nucleation and growth of crystals occurs immediately after the bulk 
convecting fluid is cooled to the liquidus temperature. As we argued above, any crystals 
nucleated before this time are remelted upon entering the superheated interior. 
Therefore, if (q- T,) > E ,  then the condition (6.2) requires that the dimensionless 
growth rate v - O(A-'). For the parametric form (5.6) for v, this corresponds to an 
undercooling 

(6.3) 
We term this the growth-limited regime, because the undercooling of the bulk fluid 
remains very small and the crystal growth is suppressed. The approach to this regime 
is rapid: by combining (5.1 l), (5.7) and (5 .8 ) ,  we see that the time evolution of the melt 
undercooling is given by 

8- e, - O(A-'/*) + 1. 

e,-0 = -- A[S+  (1 --kD)(Oa- 6,)] x(1- d )  n(8, - 8,) ~ (8 , -  8). (6.4) 1-d 

At early times, n(8,-8,) - 1, and thus for a growth rate function of form (5.6), the 
crystal production rate becomes slaved to the extracted heat flux over the dimensionless 
timescale + 1. Equation (6.4) illustrates the fundamental controls upon 
crystallization which apply during the growth-limited regime, through the factor 
[ S +  (1 -kD)(da-  B,)]. Crystallization cannot proceed too rapidly because (i) the latent 
heat of crystallization must be extracted from the chamber to prevent raising the fluid 
temperature, and (ii) rapid crystallization depresses the liquidus temperature by 
altering the fluid composition, thereby acting to decrease the undercooling which 
drives crystal growth. 

By substituting 8 - 8, into the evolution equations (5.7) and (5.8) and solving for rp ,  
we also see that, in the limit A % 1, the dimensionless volumetric crystal production 
rate is, to leading order, 

c 

which demonstrates again the control of latent heat release and liquidus slope upon the 
rate of crystallization. If we substitute (6.5) into the heat balance (5.7), we find that the 
rate of cooling of the fluid is reduced by the factor [ 1 + S / (  1 - k,) (8, - O,)], which may 
be interpreted as an effective increase in the specific heat of the crystallizing system. 

The growth-limited regime continues so long as there is substantial nucleation within 
the upper boundary layer (n - O(l)), i.e. while (8,-8,) 2 O(E). However, if the 
boundary-layer undercooling approaches the nucleation delay E ,  nucleation of new 
crystals must decrease, and the nucleation-limited regime described below commences. 
In the limit A 9 1 ,  the thickness of cumulate associated with the growth-limited regime 
may be found (approximately) by setting the liquidus temperature 8, = 8, + e in (5.13). 

6.2. The nucleation-limited regime 
When the liquidus temperature falls close to the value 8, + E ,  the rate of nucleation of 
crystals decreases rapidly and a new balance is reached, in which the roof undercooling, 
(8, - OR), remains close to the critical nucleation delay s. In this regime, the interior 
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undercooling, (8, - O), may increase and crystal growth is no longer suppressed. 
However, the fluid temperature, 8, remains above the roof temperature, 8,, and hence 
the interior undercooling is still insufficient for interior nucleation. The constraint (6.2) 
is now satisfied by the dramatic reduction in the nucleation rate within the thermal 
boundary layer, with 

(6.6) 

The boundary layer undercooling (8, - 0,) can only evolve by an amount O(A-llp) as 
the fluid continues to cool, and so, to leading order, the liquidus temperature follows 
the temperature of the roof (8, - 8,+~).  Hence, to leading order, the rate of crystal 
production in the nucleation-limited regime is, from (5.8), 

n(8, - 8,) 5 U(A-l)  < 1. 

which suggests that during the nucleation-limited regime crystallization is now 
controlled by the evolution of the roof temperature, 8,. If the roof temperature is 
maintained at a constant value, (6.7) implies that there is no further crystallization once 
the nucleation-limited regime is reached. The undercooling in the thermal boundary 
layer is insufficient for effective nucleation, and the interior undercooling increases 
towards the nucleation delay, E .  The final state is a metastable state, in which the fluid 
is everywhere supercooled to the nucleation delay, 6, but no crystallization occurs. 

However, if the roof temperature is allowed to vary-or, more specifically, to 
decrease - there is still significant crystallization associated with the nucleation-limited 
regime. The crystal production rate given by (6.7) is such that the liquidus temperature 
decreases at the same rate as the roof temperature, so that the undercooling, (8, - e,), 
within the upper thermal boundary layer remains approximately equal to E .  If the 
crystal production rate were larger than that given by (6.7),  the liquidus temperature 
would decrease more rapidly than the roof temperature and the boundary layer cease 
to be undercooled sufficiently for nucleation to continue. Conversely, if r p  were to 
decrease slightly, then (0, - 8,) would increase and crystal production accelerate. The 
control exercised by the evolution of the roof during the nucleation-limited regime 
suggests that an accurate roof model is required for the study of a given physical 
situation. 

6.3. Size grading in the crystal cumulate 
As the crystal cumulate is deposited, the mean size of the crystals sedimented varies 
with depth. This reflects the varying fluid conditions through the crystallization 
history. By evaluating (3.7) in dimensionless form, we obtain 

iid = I'($ (3HV,/A0)5 [x( 1 - d )  u];. (6.8) 

Hence, there is an increase in mean crystal radius iid if the fluid viscosity x or the crystal 
growth rate u increase, but a decrease in ii, associated with the increased efficiency of 
sedimentation as the fluid depth (1 - d )  decreases. During the growth-limited regime, 
the growth rate v is given to leading order from (6.4) as 

= (f/n)(A(1 -d)2X[S+(1 -k,)(8a-4,)1)-1, (6.9) 

where 8 - 8,. Therefore, from the definition (5.10) for the dimensionless heat fluxf, 
and (5.6) for the volumetric nucleation rate ti, we see that during the growth-limited 
regime, 

u cc ~-~~-9 (e -e , )~ (8 , -~ , -~ ) -~ .  (6.10) 
4-2 
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As the fluid cools, the dimensionless viscosity x increases (or stays constant), while the 
undercooling (0, - 0,) in the thermal boundary layer decreases. If the fluid viscosity 
remains constant, then (6.10) implies that the cumulate should be normally graded 
(small crystals over large) if the nucleation law is locally weakly nonlinear ( p  < g), but 
inversely graded (large crystals over small) if the nucleation law is locally strongly 
nonlinear ( p  > g), or if the boundary-layer undercooling approaches the nucleation 
delay e. If the fluid viscosity increases with decreasing temperature, the normal grading 
is strengthened. Note that in the growth-limited regime, the crystals deposited are 
relatively small (a, cc A-f). The tendency for normal grading is a reflection of the 
gradual decrease in the cooling rate. This increases the growth time of the crystals 
relative to their sedimentation time, and as a result, the mean size of crystals which 
sediment to the base of the melt becomes progressively smaller. 

In the nucleation-limited regime, much larger growth rates are possible because the 
constraint (6.2) is now satisfied by having n - O(A-l).  As the fluid continues to cool, 
the temperature difference, (0 - O R ) ,  between the bulk convecting fluid and the roof 
continues to decrease towards zero, while the boundary-layer undercooling (0, - 0,) 
remains approximately equal to c. Therefore, the constitutional undercooling in the 
bulk fluid, (0, - S), can increase from O(A-”*) to O( 1) during the nucleation-limited 
regime. This corresponds to a steady increase in the growth rate v, and hence from (6.8) 
we find that the crystal cumulate is typically inversely graded during the nucleation- 
limited regime. Furthermore, owing to the more rapid growth rates, crystals sedimented 
during this latter period are typically larger than those which settled during the earlier 
growth-limited regime by a factor of O ( k )  a 1. However, in some cases (see $7.2 
below), during the nucleation-limited regime, the crystal growth rate varies only 
slowly; in such cases, the evolution of the mean crystal radius is determined by the 
evolution of the fluid viscosity, x, and the thickness, (1 - d) ,  of the convecting region. 
In cases in which the viscosity variation is weak, the reduction in settling time as the 
thickness of the convecting region decreases results in the cumulate becoming normally 
graded. 

7. The limit A B 1 :  sample solutions 
We shall now illustrate the results of the asymptotic analysis for the limit A $- 1, 

presented in $6, by reference to two specific examples. Each exhibits one or both of the 
nucleation- and growth-limited regimes, but the overall dynamics differ markedly 
between them. Parameters common to all calculations are A = lo3; S = 1 ; k, = 0; and 
0, = 2. For simplicity, the nucleation and growth laws are linear ( p  = q = l), and 
except where stated to the contrary, the fluid viscosity is constant. 

7.1. Fixed roof temperature: cooling above the eutectic 
The simplest case is a fixed roof temperature above the eutectic (see figure 3) ,  for which 
a final equilibrium may be reached in which the original fluid body is part solid and 
part liquid. Solutions obtained from the asymptotic expressions (6.5) and (6.7) for the 
crystal production rate, rp,  are indistinguishable from the calculations. 

At early times, crystallization is growth-limited, with the overall rate of crystal 
production limited by the concomitant lowering of the liquidus temperature, and by 
the release of latent heat. For A = lo3 1, the curves for the fluid temperature 0 and 
the liquidus temperature 0, are indistinguishable during this initial phase. At 7 - 3.6, 
the undercooling (8, - 0,) in the cold upper boundary layer approaches the nucleation 
delay e = 0.1, which leads to a reduction in the rate of crystal nucleation. This event 
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FIGURE 3. Numerical calculation to illustrate the evolution of the model system when the upper 
boundary is suddenly lowered to a fixed temperature (0, = 0) above the eutectic. The nucleation and 
growth laws are linear, with dimensionless nucleation delay E = 0.1, and the fluid viscosity is constant. 
Other parameters are given in the text. In (a), the bulk fluid temperature 6' (-), liquidus 
temperature 8, (' ' ' . ' .) and the cumulate thickness d (---) are plotted, and in (b), the relative Rayleigh 
number Ra/Ra, (-) and relative crystal volume fraction @/Do (----) are presented as functions 
of time 7. 

is marked by a sharp transition. There then follows the second, nucleation-limited, 
regime in which the interior undercooling, (8, - 8), gradually increases, while the 
liquidus temperature remains at 8, = 8,+e and there is negligible further crys- 
tallization. At the transition between the growth- and nucleation-limited regimes, the 
crystal volume fraction @ also falls rapidly towards zero. The final state is one in which 
the alloy is not completely solidified, but rather in a metastable equilibrium. Although 
the fluid is supercooled, further crystallization is no longer possible in our model 
system because the constitutional undercooling is nowhere sufficient for nucleation to 
occur, and all free crystals have settled out of the bulk interior. In practice, one might 
expect crystallization to continue by growth of crystals in the cumulate pile. 

Throughout crystallization, the Rayleigh number decreases as the driving tem- 
perature difference (8-8,) and the fluid depth (1-d) are lowered. After the 
dimensionless calculation time 7 = 50, the Rayleigh number has fallen by four orders 
of magnitude. The numerical calculations of Hansen et al. (1 992) for infinite-prandtl- 
number convection in a fluid body with small aspect ratio suggest that when the 
Rayleigh number falls below about lo', the system may no longer be considered to be 
well-mixed. The precise moment at which this occurs in our model depends upon the 
initial Rayleigh number Ra,. For the present calculation, the convecting fluid may be 
considered well-mixed at least until T = 50 if the initial Rayleigh number Ra, 2 10". 

In figure 4, we have plotted the mean crystal radius ad as a function of depth d in 
the cumulate pile, as measured from the floor of the chamber. For illustration, to 
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FIGURE 4. Size grading in the cumulate pile for a fixed roof temperature above the eutectic. The effect 
of variable viscosity is investigated using the arbitrary law x = u / u ,  = r(l-@) (-, r = 1 ; ' ' ' ' ', r = 10; 
---, r = 100). In each case, there is a weak normal grading associated with the growth-limited regime, 
followed by a stronger inverse grading in the nucleation-limited regime. The increase in viscosity as 
the magma cools leads to a strengthening of the normal grading. For a basaltic magma (see table I), 
unit dimensionless mean crystal radius ad corresponds to crystals of radius between 0.1 mm and 
10 cm. 

investigate the effects of weakly variable viscosity, we have repeated the calculation 
using a simple model viscosity law x = r('-'), with r = 10 and 100. This corresponds to 
exponential viscosity increases by factors of 10 and 100 respectively as the fluid cools 
from 0 = 1 to 0 = 0. Larger viscosity variations would result in a stagnant viscous lid 
forming over the convective part of the fluid (Davaille & Jaupart 1993), for which a 
constant roof temperature would no longer be appropriate. The cumulate is 
characterized by a moderate normal grading (small crystals over large) during the 
growth-limited regime. This grading is more marked in fluids whose viscosity increases 
rapidly with cooling, as suggested by (6.10). Towards the top of the cumulate pile 
(d - 0.5), the grading reverses as nucleation-limited dynamics take over, and a thin 
layer of inversely graded cumulate develops. The larger crystal radii are associated 
with an increase in the undercooling (0, - 0)  of the bulk convecting fluid. 

7.2. Variable roof temperature 
We now analyse the crystallization associated with a simple prescribed model for the 
dimensionless heat flux, namely 

AT) = 0.2( 1 + ~/0.4)-1. (7.1) 

The critical aspect of (7.1) is that the roof temperature is allowed to decrease with the 
fluid temperature, through (5.10) forf. In this sense, we mimic the manner in which the 
contact temperature might decrease if cooling were partially controlled by heat transfer 
through some overlying solid or viscous fluid lid. Our sole aim is to exhibit the new 
qualitative behaviour with a decreasing roof temperature. For example, similar 
solutions occur when a fixed flux, f = const., is applied. 

If the nucleation delay is relatively small (e = O.l), nucleation commences 
immediately in the cold upper boundary layer (figure 5 )  and the rate of growth of 
crystals is limited by the overall heat balance. However, at 7 - 0.5, the boundary-layer 
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FIGURE 5. Numerical calculation for specified decaying roof fluxf = 0.2(1+ ~/0.4)-f, nucleation delay 
F = 0.1 and eutectic temperature OE = 0.2. Legend as for figure 3, with roof temperature 0, (-- -). 
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FIGURE 6. Same as figure 5, with the same decaying roof flux A but larger nucleation delay 
(F = 0.4) and dimensionless eutectic temperature 19, = 0.5. Legend as for figure 5. 

undercooling approaches the nucleation delay and the growth-limited regime is 
succeeded by the nucleation-limited regime. In contrast to the previous examples 
(figure 3), the transition between regimes is gradual. Thereafter, the fluid temperature, 
8, continues to decrease, as does the roof temperature, such that the undercooling 
within the thermal boundary layer, ( TL - T,), remains equal to the nucleation delay, E .  

This reduction in the roof temperature allows the liquidus temperature to decrease and 
so crystal production continues. Hence, there is a finite cumulate thickness associated 
with the nucleation-limited regime, again in contrast to the case of a fixed roof 
temperature (see figure 3). We halt the calculation when the bulk liquidus temperature 
reaches the eutectic, as we do not model the settling of the second crystalline phase. 

When the nucleation delay is larger ( E  = 0.4, see figure 6), the initial undercooling in 
the boundary layer is now insufficient for crystal nucleation to occur immediately. 
Therefore, the bulk fluid temperature, 8, decreases relatively rapidly, as there is no 
latent heat being released, and the roof temperature, 8,, decreases rapidly in response. 
However, by the dimensionless time 7 - 2.3, the boundary-layer undercooling, 
(OL-8,), has fallen sufficiently to allow nucleation to commence. The system 
immediately enters the nucleation-limited regime, with a large undercooling in the fluid 
interior, although the interior undercooling remains smaller than the nucleation delay. 
In this second example, there is no initial growth-limited regime, and we term 
this regime delayed nucleation. The subsequent evolution is similar to the example in 
figure 5 .  
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FIGURE 7. Size grading in the cumulate pile for variable roof flux. The two curves drawn correspond 
to the calculations presented in (a) figure 5 (-), and (b)  figure 6 (. . . '. '). For the smaller nucleation 
delay, there is a normal grading associated with the growth-limited regime, followed by an inverse 
grading during the nucleation-limited regime. For the larger nucleation delay, there is no growth- 
limited regime. The crystal pile is normally graded, and the exception of a thin, inversely graded, basal 
layer. The larger crystal sizes in (b) ,  compared with (a), are associated with a greater undercooling 
in the convecting interior. 

Finally, in figure 7, we plot the crystal grading in the cumulate pile for these last two 
examples. For the case in which there is immediate nucleation (figure 7a), the grading 
is first weakly normal, followed by a stronger inverse grading. The reversal of the 
crystal grading is associated with the change from the growth-limited regime to the 
nucleation-limited regime, during which the growth rate of crystals, and hence their 
mean size, increases. For the nucleation-delayed case (figure 7 b ) ,  the crystal pile is 
inversely graded throughout. 

8. Discussion 
We have presented a new theory of the nucleation, growth and sedimentation of a 

dilute suspension of crystals from a turbulently convecting fluid cooled from above. 
We have described how a quasi-steady crystal distribution becomes established when 
the typical residence time of crystals in the convecting interior is much less than the 
convective cooling time. In this quasi-steady limit, the rate of solidification of crystals 
within the convecting bulk fluid is balanced by the rate of sedimentation at the floor. 
This leads to a simple and tractable model of the thermal evolution of the chamber. By 
coupling a description of the cooling of a turbulently convecting fluid cooled from 
above with some model crystal nucleation and growth laws, we have calculated how 
the thickness of the sediment layer and the mean grain size of the sediment layer vary 
with time. The model applies whenever the crystal fraction is small. 

The thermodynamic controls upon the rate of crystallization are determined by a 
dimensionless parameter A .  which compares the convective cooling time with the time 
for solidification if the fluid undercooling were everywhere equal to the initial imposed 
temperature difference between the roof and the fluid. The control is strongest when A 
is large. Our model suggests that for a fixed roof temperature, the crystal production 
is rate-limited by the growth kinetics in the first instance, and the fluid temperature is 
maintained just below the liquidus. However, as the fluid continues to cool, the 
undercooling in the cold upper boundary layer falls close to the critical value required 
to nucleate crystals. At this stage, the rate of nucleation of new crystals diminishes 
dramatically, the fluid becomes more undercooled, and crystal production is rate- 



Nucleation, growth and settling of crystals 101 

limited by the nucleation kinetics. We have also demonstrated that when the flux 
extracted through the roof is insufficient for immediate nucleation of crystals, 
crystallization is delayed until the undercooling in the thermal boundary layer reaches 
the critical nucleation delay. Only then many nucleation-limited crystallization 
commence. 

In all cases, we have determined the size-grading within the crystal cumulate which 
forms at the floor. This grading reflects the undercooling in the fluid at the time of 
sedimentation, and can be either normal or inverse. Typically, the growth-limited 
regime is associated with normal grading for weakly nonlinear crystal growth laws. In 
contrast, sediment formed during the nucleation-limited regime may exhibit normal or 
inverse grading, depending upon the roof conditions. During the cooling of a single 
fluid body, both styles of grading may be observed. Here, we have only considered the 
crystallization of a single mineral phase, and hence our predictions apply only to the 
lower part of a fully solidified fluid body. 

The model presented in this paper is, as far as we know, the first attempt at 
determining how vigorous thermal convection may interact with the formation and 
suspension of dense crystals within the convecting part of the fluid. This interaction 
controls the overall cooling history of the fluid body and the structure of the final 
solidified product. However, immediate application of our present theory to magmatic 
bodies is not straightforward. The dimensional analyses presented in Appendices A 
and B suggest that the circumstances in which crystals are extracted from the upper 
boundary layer with negligible radius, and in which there is a dilute crystal suspension, 
a short crystal residence time and strong thermodynamic control ( A  9 l), arise only for 
relatively inviscid basaltic magmas. In addition, we require a relatively low nucleation 
rate and a relatively high crystal growth rate, conditions which are best met when the 
temperature difference driving convection is close to the nucleation delay. Nevertheless, 
we do not expect relaxation of most of these assumptions to make a significant 
difference to the main qualitative results of our study, with the important exception of 
the dilute-suspension assumption (@ < 1). The experiments of Sparks et al. (1993) and 
the numerical calculations of Rudman (1992) clearly demonstrate marked changes in 
sedimentation behaviour once the volume fraction of suspended particles is sufficiently 
large for the convection itself to be adversely affected. 

In studying the crystallization of silicate fluids, such as basaltic magmas, we must 
also consider the effects of strongly variable viscosity. Our calculations described in 
$7.1 suggest that the normal crystal grading associated with the growth-limited regime 
strengthens when the fluid viscosity decreases. However, two important effects were 
not included. First, we did not explicitly treat the stagnant viscous layer which should 
form near the roof when there is a large viscosity difference between the fluid at the cold 
wall and the bulk convecting fluid (Richter 1978; Davaille & Jaupart 1993), and 
second, we neglected the effect of fluid viscosity upon the crystal nucleation and growth 
laws. Nevertheless, we expect the most important effect of increasing viscosity to be the 
reduction in the efficiency of crystal settling, thereby increasing the volume fraction of 
crystals suspended in the convecting fluid. A further consideration for deep magmatic 
bodies is the effect of hydrostatic pressure upon the liquidus relationship, which may 
lead to substantial basal crystallization (see Solomatov & Stevenson 1993a, b for a 
discussion of how this might relate to crystal settling in magma oceans). In this paper, 
we have ignored all crystallization with the exception of the growth of free crystals 
nucleated near the roof. 

The work presented here began while the authors were participants in the 1992 
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Geophysical Fluid Dynamics Summer Program at Woods Hole Oceanographic 
Institution. R. A. J. was supported by a UCAR Fellowship in Ocean Modelling. We 
have benefited from discussions with Anne Davaille, Mark Davis, Phil Ihinger, Claude 
Jaupart, David Pyle, Don Snyder and Steve Tait, and the final manuscript has been 
greatly improved by comments from the referees. 

Appendix A. Extraction of crystals from the upper boundary layer 
In this paper, we have assumed that crystal growth occurs predominantly within the 

bulk convecting interior, rather than in the cold upper boundary layer, where crystals 
nucleate. This requires rapid extraction of crystals from the thermal boundary layer, 
either by gravitational settling, or by advection in the cold downgoing plumes which 
result from instability of the upper boundary. In this Appendix, we shall first determine 
when rapid extraction occurs for a vigorously convecting fluid, and then discuss how 
the precise style of crystal extraction may differ between particular fluids. 

Consider a spherical crystal nucleated at time t = 0 within the cold upper boundary 
layer. After time t ,  the crystal has radius a = V, t ,  where V, is the crystal growth rate 
within the boundary layer. If the crystal falls at its Stokes settling speed WJa) = 
2g’a2/9v, then it settles out of a boundary layer of thickness h, in time 

t s e t t l e  N [27v, h,/(2g’ v~)]’, (A 1) 

where v, is the kinematic viscosity within the boundary layer. The crystal has radius 
a, - 5 tsettle when it reaches the base of the thermal boundary layer. In deriving (A I), 
we have assumed that crystals are nucleated with zero radius, although (A 1) remains 
correct to within O(u,/a,) if crystals are nucleated with radius aN 4 ab. For crystals 
nucleated with non-zero radius, the settling timescale tsettle would be shorter than that 
given by (A 1). 

The typical residence time for a crystal in the bulk convecting flow is I,,, - 
[ (H-h) /hV2] i ,  where V is the crystal growth rate within the convecting bulk, and so 

t s e t t t e l t r e s  N h , / ( v ~ ) l f  (v/ v,)’, (A 2)  

where v is the kinematic viscosity of the bulk convecting fluid. Note that even for fluids 
whose viscosity is strongly temperature-dependent, the viscosity variation v b / v  between 
the unstable thermal boundary layer and the convecting interior does not exceed an 
order of magnitude, since most of the temperature difference is contained within a 
stagnant viscous lid (Bruce 1989; Davaille & Jaupart 1993). Therefore, since h,/H N 

H - (Y, RaJv  Ra); 4 1 for a vigorously convecting flow (where Ra, - lo3), and 
typically V < V, because the constitutional undercooling is greatest within the thermal 
boundary layer, (A 2) implies that settling of crystals out of the cold upper boundary 
layer occurs over a shorter timescale than the residence time of a typical crystal in the 
convecting bulk. However, the rate of crystal growth within the boundary layer is 
higher than that in the interior. The fraction of the crystal growth which occurs within 
the thermal boundary layer is 

a,/ad N t s e t t l e / (  vtres) - [vti ~ / ( v ~ v ) l f .  (A 3) 

Therefore, if the dominant style of crystal extraction is gravitational settling, then 
crystals have negligible radius upon extraction from the boundary layer only for very 
vigorously convecting fluids in which (Ra/Ra,)t & (v,/v)’ (V,/ V);. 

For some fluids, extraction of crystals from the thermal boundary layer may occur 
more rapidly if the timescale for instability of the thermal boundary layer, tplume,  is 
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P 2.7 x 103 kg m-3 
AP lo2 kg m-3 
CP 1.3 x 103 J kg-' K-l 
K 5.0 x 10-7 m2 s-l 
a 2.5 x 10-5 K-' 
9 5.0 x 105 J kg-' 
g 9.8 m s - ~  
AT 10-'-1O2 K 
H 102-104 m 
VO 1 o-2- 10 m2 s-' 

10°-106 #m-3 s-l 
10-10-1 0-7 m s-l 

f i 0  vo 
A 10-4-1014 
eo ~ - i  1 0-3- 104 

@O 1 0-5- 1 0' 

TABLE 1. Physical parameters applicable to a cooling body of basaltic magma. Dimensional constants 
have been obtained from a number of sources, including Fenn (1977), Kirkpatrick (1977), Dowty 
(1980), Shaw (1972), Brandeis et al. (1984) and Brandeis & Jaupart (1986). The dimensionles? groups 
e0 and A are defined by (B 2) and (5.12) respectively. In addition, we give a range for cD0 A-3, which 
is the appropriate dimensionless group when determining the validity of the dilute and quasi-steady 
approximations. 

much less than tsettze. In this case, crystals are advected out of the boundary layer by 
the cold downgoing plumes, rather than settling out gravitationally. 

Instability of the thermal boundary layer occurs when the boundary layer has 
thickness (Howard 1964) 

The growth of the thermal boundary layer is diffusive, and hence is given by h, - (Kt ) ; .  

Therefore, the timescale for the release of cold plumes is 

h, - [vb K Ra,/(gol AT)];. (A 4) 

which, after some manipulation, implies that tplume < tsettze when 

v b  5 (gK2/ vi) [27p/(2Ap)]t [aAT/(Ra,)]i. (A 6 )  

For example, for a basaltic magma (see Table l), with V, - lo-' m s-l and AT - 1 K, 
crystal extraction from the thermal boundary layer occurs by plume detachment only 
when v 5 10 m2 s-l. There is, however, a great deal of sensitivity to the chosen values 
of 5 and AT, and this constraint is relaxed significantly if the crystal growth rate is 
lower or the thermal forcing increased. Since the kinematic viscosity of a basaltic 
magma lies in the range 10-2-101 m2 s-l (Shaw 1972) and tpzume/tset tze  K vi, it is likely 
that both crystal extraction mechanisms have a role to play, except for the most 
inviscid magmas. 

We note that a similar analysis was performed by Sparks et al. (1993). By treating 
a crystal of constant size settling through the boundary layer, Sparks et al. (1993) 
concluded that gravitation settling is the dominant mechanism of crystal extraction for 
less viscous magmas, in marked contrast to the above result. The disagreement between 
these two studies arises from the differing treatments of the settling crystals. For a 
crystal of constant size, the settling time is proportional to vt, while by combining (A 1) 
and (A 3), we see that, for a growing crystal, tsettze cc vt. The difference in exponents is 
sufficient to invert the result. 
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Appendix B. Validity of the passive-tracer assumption 
In order that we may apply the experimental and theoretical results of Martin & 

Nokes (1988, 1989) for the settling of particles from a vigorously convecting fluid of 
constant viscosity, we must be able to treat the settling crystals as passive tracers away 
from the basal viscous boundary layers, which in turn requires that typical vertical 
velocities, W,,,, within the convecting bulk fluid exceed typical crystal settling 
velocities, W,(a). Following Kraichnan (1962) and Martin & Nokes (1989), mean 
turbulent velocities at mid-height of the chamber are given by 

0.06(~/H) Ral if S, < H/2; 

0 .8(~/H)RaiNu~Pr~ if 6, > H/2, W,,, = 

where Pr = V / K  is the Prandtl number and Nu is the Nusselt number (Nu - 0.16Raf for 
convection driven only from above). The viscous-boundary-layer thickness is 8, - 
3.2PriH/Nu (Kraichnan 1902). Here, it is appropriate to seek a lower bound for W,,,. 
This is given by applying (B 1) for 8, > H/2 for all values of the viscous-boundary- 
layer thickness. By using the Stokes settling velocity W’(a), we then see that W, 4 W,,, 
for crystal radii a such that 

For the model presented here, in the quasi-steady state, the mean crystal radii are given 
by iid - [(H-h) V/A]i. Therefore, condition (B 2) corresponds to the constraint upon 

(B 3) 
the crystal growth rate, 

Using sample values from table 1 for basaltic magmas, with u = m2 s-l, AT = 1 K 
and H = lo3 m, (B 3) implies that the passive-tracer approximation is strictly valid 
only when V 4 lo-’ m s-l (cf. table 1). Note, however, that Martin & Nokes observed 
that the exponential law typically remains correct within 20% up to W,/W,,, - 0.5, 
which allows us to relax the constraint (B 3) to a simple inequality. 

The foregoing analysis is for crystals of mean radius. The ratio W,/ W,,, K a’, and 
hence larger crystals might be expected to settle more rapidly than given by the 
exponential law of Martin 62 Nokes (1989) if (B 3) is only marginally satisfied for the 
mean crystal radius. This will lead to a skewing of the crystal size distribution, with 
fewer large crystals existing than is suggested by the general model solution (3.2) for 
the crystal size distribution. 

a * Kig’-k(ga AT): Hi,;. (B 2) 

v < Kig’-$(gaAT)tH-ivi. 

Appendix C. Derivation of the boundary condition $(O, t )  

function, we first integrate (3.1) with respect to a from a = 0 to 00 to obtain 
To determine the boundary condition $(O, t )  for the crystal size distribution 

assuming that $ + O  as u+ cx). The left-hand side of (C 1) is the rate of change of the 
total number of crystals in suspension, per unit volume, while the second term on the 
right-hand side is the sedimentation rate. Hence, we may identify the first term on the 
right-hand side with the crystal nucleation rate N(t), and the boundary condition for 
the crystal distribution function is 

(C 2) $(O, 0 = NO/ V ( 0 .  
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Appendix D. Validity of the dilute and quasi-steady approximations 
The model presented in this paper is valid only while the volume fraction of 

suspended crystals is small (Q, < 1). In addition, the simplified model of $ 5  applies only 
when the typical crystal residence time within the convecting bulk is much shorter than 
the overall cooling timescale (t,,, < t,). In this Appendix, we shall describe the 
conditions under which these two approximations are valid, and determine when these 
conditions are met for magmatic fluids by using the values of physical constants listed 
in table 1. 

In demonstrating the validity, or otherwise, of these two approximations, we start 
from the observation that during the initial transient, which comes immediately after 
commencement of crystal growth within the convecting bulk, the crystal fraction Q, 
increases monotonically, as does the bulk constitutional undercooling. This transient 
lasts only as long as the crystal residence time. If the dilute quasi-steady model 
presented in this paper predicts values of CD and t,,,/t, which are both much less than 
unity, then the monotonicity of Q, during the transient ensures that the dilute 
approximation remains valid throughout the transient. Thereafter, so long as we 
continue to predict CD < 1 and t,,, < t,, the model continues to be correct by 
mathematical induction. However, if at any time either or both of these conditions are 
not met, then the model presented here ceases to be valid. 

In practice, the two approximations are not entirely independent. The crystal 
fraction Q, in the quasi-steady limit is, upon evaluating the integral (3.6) in the quasi- 
steady limit, 

(D 1) Q, = Go n & ~ i (  1 - d);, 

where Q0 = (4xr($)/3D)(HiNO @/A!). (D 2) 

t,,,/t, - ( @ , / A )  up;( 1 - d)-i (0 - OR)$, 

Similarly, from (4.1) and (4.2) we can obtain the ratio of the crystal residence time to 
the overall cooling timescale, 

(D 3) 

in which we have substituted forfand t,, from (5.10) and (5.12) respectively. We may 
therefore determine the validity of the assumptions Q, 4 1 and t,,, << t from the values 
of Q0 and A ,  and from the evolution of n, v and x during the growth- and nucleation- 
limited regimes. Except at the very late stages of crystallization, the fluid depth, (1 - d), 
and the driving temperature difference (0- OC), remain O( 1). 

We may now determine under what conditions Q, 6 1 and t,,, << t, for each of the 
growth- and nucleation-limited regimes. In the limit A 9 1, this task is made easier by 
noting from the forms of (D 1) and (D 3) that if both approximations are valid for the 
growth-limited regime (n - 0(1), v - O(A-')) ,  then they must also be valid for the 
corresponding nucleation-limited regime (n - O(A-'), ZI - O(1)). Hence we need only 
consider the growth-limited regime, for which we see from the constraint (6.1) that 

Therefore, if S, (0-0,) = 0(1), the dilute and quasi-steady approximations are 
equivalent in the limit A %- 1. We therefore require only that A %- 1 and Q,,A-i 4 1, 
noting that A K fi, V, vf, H(AT)-: and CD, A-i K f l  vf(AT)-i (for basaltic magmas the 
constants of proportionality are 10' and 2 x 10' respectively). 

By applying the physical values listed in table 1, we may now see that the model 
presented here can formally only be applied to relatively inviscid (v, 5 lo-' m2 s-'), 
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relatively deep ( H  2 lo3 m) magma bodies, in which the volumetric nucleation rate, fro, 
is small and the crystal growth rate V, is large at undercooling equal to the applied 
temperature difference AT. These last two conditions are best met when the applied 
temperature difference is close to, or less than, the critical nucleation delay, i.e. the 
dimensionless nucleation delay 8 is comparable to unity (0.2 5 c 5 1). Typical 
dimensional values for the nucleation delay are of the order 5-100 K, at which 
undercoolings crystal growth rates are indeed relatively large (Dowty 1980 ; Brandeis 
& Jaupart 1986). 
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